A Reflow Soldering Oven: How Does It Work?

By Harriett Crosby


In the assembly industries, the process of attaching electronic components on to a printed circuit board (PCB) is usually done by soldering them onto the board. Reflow soldering oven is one of the most modern devices used for to achieve this attachment. The process starts with a sticky mixture of flux and powdered solder that helps to attach the components on to their correct positions on to the board. A process of controlled heating and cooling then follows to achieve permanent joints.

The heat in the majority of these ovens is produced from ceramic infrared heaters, and then directed to assembly chambers through radiation process. The infrared ones uses fans to force heat into the assembly chambers where the PCB and the components are exposed to optimal temperatures for melting of the solder for permanent fixing of the components on to the PCB.

A basic reflow oven has four stages through which the operation goes to be complete. The starting point is the preheat zone. This is where the temperature/time rate (ramp rate) is determined. It is the rate at which the temperature of the mounting board and the electrical components on it changes relative to time. This is significant as it helps determine the maximum temperatures possible that can be reached and for how long. The solvent in the mix also starts evaporating at this point.

The second phase is the thermal soak zone where the solder paste volatiles are removed. It also involves flux activation(removal of oxide from leads and pads) and the temperatures can range anywhere between 60 to 120 depending on the tolerance levels of mounting board and the components on it.

The reflow zone is the third place where the temperatures reaches maximum peak, usually above the liquidus point. The soldering paste is molten under efficiently controlled conditions reducing the surface tension of flux at the point of metal juncture. The result of this process is the permanent fixing of electrical components on to the circuit board. The ramp rate and temperature control is highly significant at this phase. The sudden change of temperatures from the soak zone to above liquidus can easily destroy the devices through temperature shock and thus calls for very efficient control mechanisms.

The last stage is the cooling zone where the circuit board and its component are cooled. This process too is done under efficient temperature control as sudden temperature changes may result to thermal shock. It is also important to avoid excessive metallic formation at this stage as the desired finished circuit board should have components attached with fined grained structured solder making it mechanically sound.

The modern high tech ovens allows for only one reflow at the third phase as the granules in the paste are made to surpass the temperatures at this phase. For optimality and lower consumption therefore, it is advisable to shop for an efficient oven that put in place the most recent technological advancement.

The business environment around us is rapidly changing particularly in regards to the customers, market, technology and competition hence the need to continuously review or operating methods to be sure they are optimal. The best reflow soldering oven guarantees maximum productivity and profitability for assembly firms and other businesses require soldering.




About the Author:



No comments:

Post a Comment